Evolutionary Algorithm for RNA Secondary Structure Prediction Based on Simulated SHAPE Data
نویسندگان
چکیده
BACKGROUND Non-coding RNAs perform a wide range of functions inside the living cells that are related to their structures. Several algorithms have been proposed to predict RNA secondary structure based on minimum free energy. Low prediction accuracy of these algorithms indicates that free energy alone is not sufficient to predict the functional secondary structure. Recently, the obtained information from the SHAPE experiment greatly improves the accuracy of RNA secondary structure prediction by adding this information to the thermodynamic free energy as pseudo-free energy. METHOD In this paper, a new method is proposed to predict RNA secondary structure based on both free energy and SHAPE pseudo-free energy. For each RNA sequence, a population of secondary structures is constructed and their SHAPE data are simulated. Then, an evolutionary algorithm is used to improve each structure based on both free and pseudo-free energies. Finally, a structure with minimum summation of free and pseudo-free energies is considered as the predicted RNA secondary structure. RESULTS AND CONCLUSIONS Computationally simulating the SHAPE data for a given RNA sequence requires its secondary structure. Here, we overcome this limitation by employing a population of secondary structures. This helps us to simulate the SHAPE data for any RNA sequence and consequently improves the accuracy of RNA secondary structure prediction as it is confirmed by our experiments. The source code and web server of our proposed method are freely available at http://mostafa.ut.ac.ir/ESD-Fold/.
منابع مشابه
Bayesian sampling of evolutionarily conserved RNA secondary structures with pseudoknots
MOTIVATION Today many non-coding RNAs are known to play an active role in various important biological processes. Since RNA's functionality is correlated with specific structural motifs that are often conserved in phylogenetically related molecules, computational prediction of RNA structure should ideally be based on a set of homologous primary structures. But many available RNA secondary struc...
متن کاملPreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars
Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...
متن کاملخوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملImproved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data
Recently, several experimental techniques have emerged for probing RNA structures based on high-throughput sequencing. However, most secondary structure prediction tools that incorporate probing data are designed and optimized for particular types of experiments. For example, RNAstructure-Fold is optimized for SHAPE data, while SeqFold is optimized for PARS data. Here, we report a new RNA secon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016